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Report of the Reuse and Product Lines Working Group of WISR8 

Abstract: This report summarizes the discussions held by the Reuse and 
Product Lines working group at the Eighth Workshop on Software Reuse 
(WISR8). The working group was chartered to explore the range of issues and 
practices necessary for the successful fielding of a software product line, which 
is a collection of systems that are built from a common set of core assets. 
Issues addressed include the relation between a product line and a domain, 
benefits of the product line approach to software development, organizational 
factors, effects of the products' domain and context, risks, the role of 
architecture and architects, and managing change and variation. Maintaining 
intellectual control was a theme that arose repeatedly during the discussion. 

1       Introduction 

This report synthesizes the discussions held at the Eighth Workshop on Software Reuse 
(WISR8) by the Reuse and Product Lines working group. 

2      Working Group Charter 

This sections contains the charter for the Reuse and Product Lines working group. 

2.1 Scope 

A product line is a group of related systems that, taken together, address a specific market 
segment. Product lines are most efficiently built from a common set of reusable assets, such 
as domain models, requirements, architectures, software components, test plans, project 
schedules, tools, and environments. A product line built in this way epitomizes reuse in a 

planned and systematic way. 

This working group will explore the issues associated with successful fielding of a product line 
from a common asset base. We will try to understand the differences between planned, sys- 
tematic reuse of an asset base over which the developing organization has broad control, and 
reuse that occurs serendipitously or opportunistically or is based upon assets built by others. 

2.2 Goals 

The proposed working group will address practical issues of systematic reuse in a product line 
context. Actual experience, where available, will take precedence over theoretical supposition. 
Topics may include (but are not limited to) the following: 

• organizational issues: how best to organize to field a product line 

• configuration control issues and associated tool support 
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techniques (such as parameterization) and issues (such as testing of the multitude of 
resulting configurations) associated with making software components tailorable 

cost models for product lines 

leveraging test plans and test cases across all members of a product line 

product lines and application generators 

leveraging design and coding reviews across all members of a product line 

2.3   Process 
Experience reports will be sought, and participants will be asked to choose a small list of top- 
ics, which will then be examined to the fullest extent possible under the time constraints. 

As a stimulus for discussion, the leader will present a case study in successful product line 
development (performed by a Swedish defense contractor called CelsiusTech Systems AB). 
CelsiusTech routinely turns out million-line-plus, hard real-time Ada systems for shipboard 
command and control for a wide variety of different ships around the world using the product 

line approach. 

3 Working Group Members 

Members of the working group included 

Jeff Poulin (Lockheed Martin Federal Systems) 

Cuauhtemoc Lemus (University of Houston) 

Greg Butler (Concordia University) 

David Hale (University of Alabama) 

Fatima Mili (Oakland University) 

Cornelia Boldyreff (University of Durham) 

Oh-Cheon Kwon (University of Durham) 

Ernesto Guerrieri (Buzzeo, Inc.) 

The working group leader was Paul Clements of the Software Engineering Institute. 

4 Issues Addressed 
The working group addressed the following issues, each of which will be treated in detail in 

subsequent sections: 

• Terminology: What is the meaning of product line, product family, and domain? How do 
these terms and concepts relate to each other? 

• Experience reports: Four members recounted their experience with (aspects of) product 
line development to provide concrete examples of the concepts and issues in actual 
practice. 
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Key organizational factors: What are the factors that affect an organization's transition 
to a product line approach? What factors are relevant with respect to the organization itself 
and the products that it builds? 

• Risks: Product lines are not without their downside, and we discussed some of the major 
drawbacks with the approach. 

• Architecture: What is the role of architecture in a product line? What responsibilities are 
borne by the architect(s)? 

• Managing change and variation: What happens when a variant is required that is 
outside the scope of the original product line? 

5      Terminology 
The group first approached the issue of terminology and product lines. We agreed to distin- 
guish between a product line, which is a set of related systems that together address a market 
segment, and a product family, which is a set of related systems that are built from a common 
set of core assets. Thus, a product line is a market- or customer-driven concept, whereas a 
product family is a technology- or implementation-dependent concept. 

A product line need not be built as a product family (i.e., from a common set of core assets), 
although in the context of a reuse conference we agreed to consider this type of product line. 
Conversely, a product family need not be a product line (i.e., addressing a particular market 

niche). 

Questions about the definition of domain soon arose. What is the difference between a product 
line and a domain? One participant maintained that there was no difference, except that do- 
main was a term familiar to developers whereas product line resonated with management, and 
so the choice of term was audience-dependent. However, borrowing a definition from the do- 
main analysis working group, we agreed that a domain was a specialized body of knowl- 
edge—an area of expertise. Thus, it is an intangible thing, unlike a product line or product 
family, which are specific sets of actual (or envisioned) products. 

Lingering confusion was cleared when we compared product lines and domains. There are 

• product lines that encompass more than one domain. An automobile product line requires 
expertise in engines, suspension, interior design, and the like. 

• product lines that are synonymous with domains. "Relational databases" describes both 
a body of knowledge (domain) and a set of products (product line). 

• product lines that form a subset of a domain. Cellular phones form a product line wholly 
contained (in addition to other product lines such as pagers) within the domain of wireless 
communication. 

Further, the meanings of these terms are depend upon the context in which they are used. 
One organization's product (e.g., a GUI widget) may be but a single component in the product 
of an organization building large systems. Either may be built in a product line. Similarly, a 
product that grew out of a carefully planned product line development (which we referred to 
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variously as a "top-down," "a priori," or "planned" product line) could serve as a component in 
a product line where the components are not designed from scratch but rather found opportu- 

nistically ("bottom-up," "a posteriori," or "unplanned"). 

6      Experience Reports 
Paul Clements presented the CelsiusTech case study [Brownsword 96]. CelsiusTech is a 
Swedish company that builds shipboard command and control systems for many navies 
around the world. In December of 1985, they landed two major contracts simultaneously. Re- 
alizing that they could not possibly complete those contracts one at a time, they adopted a 
product line strategy as the only way to fulfill their company's obligations. Using their extensive 
domain knowledge from many years and many products, they produced an architecture that 
would serve these two systems as well as future systems that were anticipated. Today, Cel- 
siusTech has fielded over 55 variations of their basic system on several different classes of 
ships, including submarines. A typical system has 15-30 nodes on a local area network, 30- 
70 CPUs, and 100-300 separate Ada programs of 1-1.5 million lines of Ada code. Their archi- 
tecture is a carefully layered one, with application-dependent, machine-independent software 
at the top and application-independent, machine-dependent software at the bottom. Strict and 
careful attention was paid to design principles of abstraction, encapsulation, and information- 
hiding. The components that are reused from product to product are large-scale pre-integrated 
chunks called system functions, which are user-visible features of the systems; this large- 
grained reuse was a key to their success. CelsiusTech reports around 80% verbatim reuse 
from system to system, delivery times an order of magnitude less than before, and whole sys- 
tems integrated by one or two people. Today they field systems in their product line using a 
work force about a third the size of a few years ago, and report greater reliability, predictability, 
and customer satisfaction. One of the effects of product line development for CelsiusTech has 
been a different customer interaction model. Customer requirements are now negotiated with 
the core asset group (to make sure the proposed system does not radically depart from the 
product line); customers have formed a user group to drive their requirements evolution jointly. 

Jeff Poulin presented an organization for a management information system product line at 
Lockheed Martin. It resembled the CelsiusTech organization in that there was a group respon- 
sible for maintaining the reusable assets, and this group was separate from the groups respon- 
sible for fielding individual products. An architect oversees both the reusable asset group and 
the product groups to assure that products conform to the architecture and to evolve the archi- 
tecture to respond to change. A separate group is responsible for configuration management, 
maintaining a small number of versions of each of the assets, as illustrated by Figure 6-1. Jeff 

reported around 20% reuse, which is quite high for MIS systems. 
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6-1. An Organization for Product Lines 

Ernesto Guerrieri explained his company's approach to product lines is to deliver product "kits" 
to customers. The domain is software for institutions of higher education, e.g., student infor- 
mation systems, alumni development, financial management, and human resources. A kit in- 
cludes all of the documentation and configurable software with which a customer can produce 
a product to satisfy his or her particular requirements. Domain analysis forms an explicit front 
end to the process of producing the kits (which is equivalent to defining the product lines). The 
early or "premier" customers got to participate in the domain analysis effort, thus assuring ap- 
plicability to their particular needs, in return for being the company's "early adopters." Using 
this product line approach, the company can deliver systems to customers within about a 
month. 

Cornelia Boldyreff and Oh-Cheon Kwon presented a process model for configuration manage- 
ment in a product line environment. 

From these four presentations, some important themes emerged: 

• Deep knowledge of the application domain is critical. 

• It is important that an organizational entity is assigned responsibility for maintaining the 
reusable assets, and that this entity is separate from the entities charged with producing 
a specific product in the product line. 

Other themes also emerged, such as the key role of architecture, which will be discussed in 
the following sections. 

7      Discriminating Factors 
Different organizations will take different paths towards successful development and deploy- 
ment (marketing) of a product line. The group spent time trying to enumerate what the discrim- 
inating factors were that would affect an organization's approach or chances of success. 
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These factors are related to the organization itself, and the context in which the organization 
operates (such as the nature of its products and its market). 

7.1 Organizational Factors 

Organizational factors include the following: 

• Whether or not the organization has sufficiently deep domain knowledge. 

• Whether or not an empowered champion exists for the transition to the product line 
approach. 

• Whether or not the organization possesses people with strong architectural skills with the 
ability to grasp abstractions at the component and the product level. 

• What legacy assets are available, e.g., software components, documentation, test plans 
and cases, tools, development environments. (Legacy assets could help or hinder, 
depending on how applicable they are; they might speed the process, or they might inhibit 
new development necessary to accommodate the variation that the product line needs to 
support. They might also represent old, established systems that must continue to be 
supported.) 

• The source of the funding to pay for the product line development: whether previous 
projects have provided a windfall, whether R&D money is available, or whether the new 
(product line) contracts are fixed-price or cost-plus. 

• Whether or not there is a particular group, apart from groups responsible for individual 
products, that maintains the reusable assets for the product line. 

7.2 Environmental Factors 

Environmental factors describe the product, what it does, and how it is built: 

Whether the reuse from product to product is large-grained or small-grained. With small- 
grained reuse typically comes the need to search a library, evaluate potential choices, and 
choose from a long list of candidate components. With large-grained reuse, systems are 
assembled from a small number of components. Adaptation and composition are the only 
steps. 

• How challenging is it to build each individual product? For instance, are the products hard 
real-time or highly distributed? The harder it is to build a product, the more advantageous 
a product line may be—but the risk is higher. 

Environmental factors also describe the product's domain: 

• Whether the domain is stable or not, meaning how often variations are expected and how 
wide the variation across the products is. Is 80% reuse expected, or 20%? Will new 
products expand the product line (i.e., vary in new ways) or be contained within it (i.e., vary 
in ways accounted for by the components' variability capabilities)? Will newer products 
use the same or different technology? 

• What is the life cycle of the products? Will older versions have to be maintained and 
supported for 20 years, or can they be replaced by current versions? 

• Are there stable, well-defined architectures for the domain? 
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• How many products are likely to populate the product line? Will a few major versions be 
maintained, or many? 

Finally, environmental factors describe the marketplace: 

• What are the products' requirements for time to deployment? Government contracts often 
set relatively far, and fixed, delivery dates, whereas in the open market there is a premium 
on getting the product on shelves as soon as possible. 

• How big is the customer base? Will the product line consist of large, expensive systems 
purchased by a few customers with whom close relationships can be formed, or is the 
product line for the mass market with thousands of anonymous consumers? 

8 Risks 
Risks associated with product line development identified by the group include the following: 

• An organization can come to rely on its product line infrastructure to accommodate new 
requirements. But product lines are only flexible to a point. Organizations must guard 
against complacency in case a competing organization enters the market with an 
innovative technology outside the scope of the product line. It is important in any 
organization to keep looking to the horizon, but especially so in a product line 
organization. The product line becomes its paradigm, and it becomes vulnerable to a 
paradigm shift that may catch it by surprise. 

• Similarly, a product line supports variability, but only within certain dimensions. 
Competitors may offer different systems in the same domain that offer more variability, the 
mere novelty of which may lure customers away. General Motors lost market share in the 
1980s because its products were too similar to each other—their different automobiles 
were perceived as the same cars with different nameplates. 

• Experience has shown that cost and time to market of early products in a product line may 
be higher than normal. 

• The first product, aiming to be general, may not meet the first customer's requirements 
well. Or, if the organization fixates on the first system in an attempt prove the concept by 
making the first system work at any price, that first system may lead to an approach that 
is not general enough. 

• There are additional costs of training and infrastructure setup. Bringing a new person 
aboard may be more complicated and require more methodological training. 

9 The Role of Architecture and Architects 
A product line cannot exist without an architecture. Usually the architecture is explicitly de- 
signed for the product line. It is possible that the architecture for a single product will be general 
enough to support all future (less general) versions of the system, but this is highly unlikely. 

The architecture forms the basis for product line evolution for growing (as opposed to building) 
software [Brooks 87]. It is an expression of the commonality across products assumed by the 
product line designer. It is also at the very least a de facto expression of the variability that the 
product line encompasses. Every architecture divides all changes into three classes: (a) 
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changes that are confined to a single component; (b) changes that affect several components; 
and (c) changes that affect the architectural underpinnings. Hence, an architecture that is suc- 
cessful in the context of a product line is one in which the variation across the products falls 
into the first or second class. Further, an architecture should be built so that the cost of a 
change (producing a variant) is proportional to the value of making that change and the likeli- 

hood that the change (variant) will be required. 

In addition to the standard notion of an architect responsible for the overall structuring of the 
system, its parts, and their interaction and coordination, there are also domain architects. 
These are experts in particular domains, such as security or networking, who may be called 
in to provide solutions to particular problems. Hence, the overall architecture should accom- 
modate the work of these experts by providing them with well-encapsulated sections of the 

system in which to apply their solutions. 

Architectures are often represented by system views, reflecting the different structures that are 
present in every system. These different structures and the views that show them provide op- 
portunities for managing different aspects of a system's quality attributes such as performance 

or modifiability. Views most often used include the 

• modular or logical view. This structure decomposes the system into work assignments 
assailable by different teams. 
process view. This structure decomposes the system into processes or tasks that execute 
concurrently and synchronize with each other. 

• physical view. This structure allocates software to processors. 

• functional view. This structure decomposes the system into (possibly overlapping) chunks 
of software, where each implements a particular user-visible function of the system. 

Performance is most affected by the process and physical views; modifiability is usually the 
purview of the modular view; correctness often resides in the functional and process views. 

How might each view change in a product line context, as opposed to a single-system devel- 
opment? If some products were proper subsets of others, that subsetting might be accom- 
plished by eliminating processes and/or modules and/or functions, thus influencing all affected 
views. Some versions might run on different hardware configurations, thus affecting the phys- 

ical view. 

Ownership of the architecture is a key issue. Ownership means controlling how it evolves over 
time, as well as making sure that "architectural drift" does not occur—this is when individual 
projects make unauthorized changes to the reusable components or how they interact with 

each other. 

This implies the importance of having a central architectural authority to hold tightly to the reins 
of the product line. But in very large systems, it is unlikely that a single person can perform all 
of the duties, attend all of the meetings, keep abreast of all anticipated changes, perform all of 
the enforcement, and maintain all of the designs that are necessary to sustain a product line 
throughout its life. Hence, a hierarchical arrangement is the norm, where there is a chief archi- 
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tect who retains authority, but who has a staff that helps promulgate policy and brings impor- 
tant matters to his or her attention. Here, the architect can help his or her own plight by making 
sure that the architecture is cleanly divided into well-defined components with well-specified 
interfaces. Issues brought to the architect's attention will often be couched in terms of those 
interfaces; hence, the software-to-software interfaces are also the backbone of the team-to- 

team or architect-to-component interfaces as well. 

10    Managing Change and Variation 
Configuration management and version control are key issues and must be addressed care- 
fully and rigorously in order for the product line to succeed. A corollary issue is that it is impor- 
tant to decide how many versions of reusable components are going to be maintained and 
supported. CM is more complicated in a product line context for two reasons: (1) a change 
must be considered not from the point of view of a single product, but in terms of keeping the 
changed component usable by all of the products that currently employ it; and (2) it is more 
likely to be necessary to maintain separate versions of reusable components, as opposed to 
simply supplying the most recent one, as may suffice in one-at-a-time development. 

Strong, centralized architectural control is key to product line development, but so is manage- 
ment of change and evolution. In conventional development, the architect answers to a single 
customer or set of customers, and their needs are often paramount. But in a product line, the 
architect answers to users of all versions of the system, and keeping the product line intact is 
more important than making changes to accommodate a single user's needs. 

Variation in the reusable assets is often handled by parameterization. However, this approach 
carries its own problems. New combinations of parameters effectively produce new versions 
of the code that must be tested. However, regression testing tools do not know the difference 
between a parameter whose new value makes a difference and one that does not, and testing 
is sometimes overdone. Further, some combinations of parameters may be illegal, and these 
must be identified and ruled out. This is analogous to the feature interaction problem in tele- 

communications. 

What happens when a request for a variant is outside the boundaries of the product line? Re- 
jection or renegotiation of the request is certainly a possibility, but often this is not the desirable 
response. Impact analysis can be done to gauge the extent (and cost) of the change. As noted 
in the previous section, the product line architecture will determine how hard it will be to make 
the required modification(s). A business analysis can be done to determine the value of the 
new variant, perhaps in the context of anticipated market shifts where the variant might be of 
value beyond the specific customer who requested it. Then, as before, the cost and value can 
be compared. Thus, "outside the product line" is a phrase with no operational meaning. Ease 
of change is a spectrum, not a boolean. The required change(s) will be quite easy (e.g., via 
parameterization that is already in place), somewhat hard (e.g., a component will have to be 
replaced), or very hard (e.g., the entire architecture must change). 
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When a new product is requested, who is responsible for providing it? An individual product 
manager may well be the one who gets the request from his current customer. It may be to his 
advantage to let the reuse group handle the request because it will cost him less; however, it 
may take longer that way, thus alienating his customer. The answer to this question may well 
depend on two things: (a) What part of the organization fields the new request? Does a product 
manager, or is there a product-line-level clearinghouse for such requests? This is a customer 
management issue, (b) How large-grained is the reuse in the product line? Products with 10% 
reuse may be more likely to handle changes themselves, as opposed to projects with 80% re- 

use consisting mainly of a few very large reusable chunks. 

We conjectured that the ability to accommodate variation was the primary difference between 
pure-hardware product lines and software product lines. Software is more variable, and its 
variations can typically be bound much later (even at runtime) than with hardware. 

11 Miscellaneous 
We did not thoroughly address every relevant topic. This section records those issues that we 

touched on only briefly. They included 

• the necessity of having a strong, well-defined process to control the production of 
individual systems (products) using the reusable assets, as well as to control the evolution 
of those assets. 
the question of how to price an individual product in a product line, and how to amortize 
the high up-front investment typically incurred in product line development. 

• the observation that organizations change in the face of a real, perceived, or anticipated 
crisis. How does the product line champion, who already perceives the crisis that is 
causing him to advocate change, get his company to see the crisis? How does he 
crystallize his vision? Risk management is one approach that many organizations are 
adopting as a way to spot crises in the making, and this may be a vehicle for bringing the 
situation to management's attention. 

• noting that customer management is important, both in terms of keeping new 
requirements in check (in line with the variations supported by the product line), as well 
as working to keep their expectations in line, and making them understand that the easy 
variation may only come once the product line is mature and not when the early products 
are being produced. 

12 Summary 
Intellectual control seems to be a key to successfully developing a product line. An organiza- 
tion must achieve intellectual control over the domain(s) involved, as well as over its goals, 
plans, assets, and capabilities. Product lines strongly resemble conventional system building 
in many ways, especially when building a system with changeability in mind, and when building 
a system using reusable assets. However, there are important differences having to do with 
process, organizational structure, customer interfaces, and technical issues. An organization 
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must be aware of these key issues if it hopes to successfully develop a product line and enjoy 

its considerable benefits. 
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